

Business as Unusual

Leveraging the Water Supply
Planning Process to Create
Economic Opportunity, Enhance
Environmental Integrity and
Increase Regulatory Certainty

What We Do

- Gather and synthesize state-wide water supply plan data:
 - Needs (drinking, agricultural, industrial)
 - Existing Sources (lakes, streams, wells, springs)
 - Proposed Supplementary Sources
- Evaluate the cumulative impacts of projected water withdrawals, discharges, diversions and impoundments on:
 - Off-stream uses: existing permits, grandfathered uses
 - Instream uses: aquatic life, assimilative capacity, physical properties, chemical properties
 - Downstream withdrawals/discharges

Why Do We Do It?

- Increase certainty (decrease uncertainty)
- Enhance Environmental Integrity
- ◆ Create economic opportunity
- ◆ In general, we want to move beyond:
 - Overestimate of demand as the only MOS
 - Lack of information about upstream changes, and downstream effects
 - Narrow range of alternatives due to cost of alternatives evaluation
 - Quantity and Quality un-related

(Un)Certainty and Economics

- Water availability influences growth
- Budgetary constraints influence our ability to monitor, and therefore, model and make decisions
- Rational versus adaptive expectations water supply plans
 - Water Supply Planning horizon is 30 years, updated every 5 years
- Regulatory uncertainty makes planning more costly

What We Do: Modeling Surface water flows

- Quantity
 - Annual Inflows
- Timing
 - Daily, monthly, seasonal inflow
- Storage
 - Reservoir storage available (crucial!)
- Drought Response

How We Do It: Decision Support System

- An integrated "meta-modeling" and data analysis system
- Provides Integrated Data Acquisition, Analysis, and Modeling
 - Connect to web-based data sources with automated retrieval
 - Utilize internal DEQ databases, such as VPDES and VWUDS
 - Integrate data with hydrologic modeling software for longterm impact analysis and short-term prediction

How:

- Leverage Existing Web-Based Data Sources
- Make in-house data sources web accessible
- OO System for integration of models and data
- Continually update model with recent permit decisions

Status:

- All permits issued/reissued since Spring 2009 in state-wide model (17)
- Approved WS Plans being programmed into modeling system as of Summer 2010

Ecological Health Modeling System

- Lack of comprehensive Flow-ecology model increases regulatory uncertainty
- Main Drivers of Ecological Health:
 - Native/Naturalized
 Community (stream class/location dependent)
 - 2. Extent of detrimental flow alteration
 - 3. Water Quality
- Without knowing all three of the above, we face greater (sometimes unacceptable) uncertainty
- Construction of state-wide "Flow-ecology" model in the works

Drought Response and Conservation

- Drought Response decreasing nonessential demands during drought increases certainty for essential demands
- Conservation Increasing efficiency of essential uses during non-drought times increases availability of water for all users (including in-stream resources)

Questions that we can ask ...

- Are there alternatives in water supply plans that are preferable?
- How will future land use build-out affect downstream water supplies (availability, timing, cost of treatment)?
- If temperature and precipitation patterns change, what happens?
- What are the effects of all of these things on: aquatic life, recreation, water quality?
- What effect will drought restrictions have? (by use type, and season?)
- Does a water allocation upstream affect dilution/DO/temperature downstream?
- All of these in terms of: availability, aquatic life, recreation, and quality.

Perceived Data/Analysis Gaps

- Extent of grandfathered water use
- Inter-basin transfers (within a system)
- VPDES data for withdrawals
- The limits of conservation ordinances and lowhanging fruit
- Understanding historical surface and groundwater use impacts on stream flows
- The magnitude of agricultural water use
- The consumptive nature of all uses
- Impact of groundwater withdrawals on base flows (short term and long term)
- Flow-ecology relationships need to be fleshed out state-wide (under way)